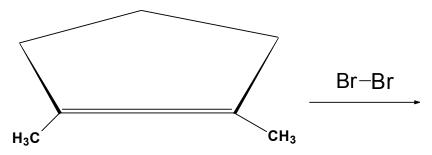
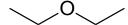
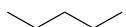
CHE 241/240

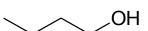
Organic Chemistry


Instructor: Dr. Dexter L. Criss

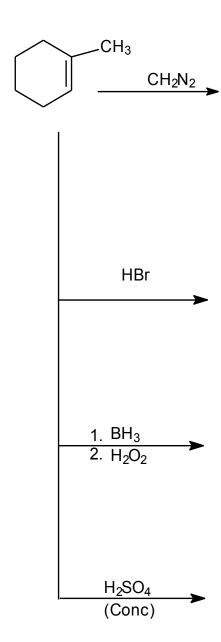
Exam #3 (Learning Center Version)


Student's	Full Name (Print)								
Student's	Full Name (Signature)								
NOTE:	You are allowed to use calculators on this exam. However, sharing of calculators is strictly prohibited. Violators will receive a "0" grade for the exam! NO PENS!!!								
	Remember, no hats or caps are allowed during the exam!								
	Good Luck!!!								


$$\downarrow$$
 o \int


II. Give the mechanism and product for the reaction below. 12 points

III. Which compound below would have the highest boiling point? Please explain your selection. 5 *points*

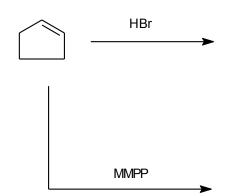


IV. Which alcohol is the stronger acid; methanol or ethanol? Explain your answer. 5 pts

V. Reactions.

35 points

H—C
$$\equiv$$
C—CH₃ $\xrightarrow{O_3}$ HBr


$$CH_3$$
- C = C - CH_3 $\xrightarrow{Br_2}$

OCH₃

$$H_3O^{\dagger}$$
. $CH_3CH_2-O-CH_2CH_3$

$$\frac{\text{KMnO}_4/\text{H}_2\text{O}}{\text{cold}}$$

$$CH_3$$
 Br_2 H_2O

$$CH_3CH_2OH + HOCH_2CH_3$$

VI. Give a plausible mechanism for the reaction below.

12 points

CH₃CH₂OH

+

CH₃CH₂OH

$$H_2SO_4 \text{ (conc)}$$
 H_2O

 $\mathsf{CH_3}\mathsf{CH_2} {\longleftarrow} \mathsf{O} {\longleftarrow} \mathsf{CH_2}\mathsf{CH_3}$

VII. Draw the major product and mechanism for the reaction below. 10 points

VIII. Write a **retrosynthetic** analysis that could be used to synthesize the product below from cyclohexane. 10 points

$$\stackrel{\mathsf{CH}_2}{\longrightarrow} \Longrightarrow \bigcirc$$

Retrosynthesis

Synthesis

CHE 240 ONLY!!!!!

8 points

IXa.

CHE 241 ONLY!!!!!!

IXb. Compound **A** has the molecular formula C₅H₈ and shows a peak near 1650 cm-1 (moderate) in its IR spectrum. Compound **A** rapidly decolorizes liquid bromine. In addition, the compound is soluble in cold concentrated H₂SO₄. Treatment of **A** with hydrogen gas and nickle catalyst yields compound **B** (C₅H₁₀). Treatment of **A** with cold aqueous KMnO₄ gave a diol **C**. However **A** gave a positive test with hot aqueous KMnO₄. Propose a structure for **A**, **B**, **C**. 8 points

The Periodic Table of the Elements

1																	2
H																	He
Hydrogen 1.00794																	Helium
3	4	1										5	6	7	8	9	4.003
Li	Be											В	Č	N	o	F	Ne
Lithium 6.941	Beryllium 9.012182											Boron 10.811	Carbon 12.0107	Nitrogen 14.00674	Oxygen 15.9994	Fluorine 18.9984032	Neon 20.1797
11	12	1										13	14	15	16	17	18
Na	Mg											Al	Si	P	S	Cl	Ar
Sodium 22.989770	Magnesium 24.3050											Aluminum 26.981538	Silicon 28.0855	Phosphorus 30.973761	Sulfur 32.066	Chlorine 35.4527	Argon 39.948
19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
K	Ca	Sc	Ti	\mathbf{V}	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
Potassium 39.0983	Calcium 40.078	Scandium 44.955910	Titanium 47.867	Vanadium 50.9415	Chromium 51.9961	Manganese 54.938049	1ron 55.845	Cobalt 58.933200	Nickel 58.6934	Copper 63.546	Zinc 65.39	Gallium 69.723	Germanium 72.61	Arsenic 74.92160	Selenium 78.96	Bromine 79.904	Krypton 83.80
		•						ID T	ahle			Frequ	ency				

Ca Calcium 40.078	Sc Scandium 44.955910	Ti Titanium 47.867	V Vanadium 50.9415	Cr Chromium 51.9961	Mn Manganese 54.938049	Fe 1ron 55.845	Co Cobalt 58.933200	Ni Nickel 58.6934	Cu Copper 63.546	Zn Zinc 65.39	Ga Gallium 69.723	Ge Germanium 72.61	As Arsenic 74.92160	Se Selenium 78.96	Br Bromine 79.904
	Group IR Table										Frequ ange	Intensity ^a			
Α.	Alkyl C—H Isopro	pyl, –	CH ₃) ₂	•	and	28 13 d 13	53-29 80-13 65-13	962 385 370	(m-s) (s) (s) (m) (s)						
В.	Alkenyl C—H (stretching) C=C (stretching) R—CH=CH ₂ R ₂ C=CH ₂ cis-RCH=CHR (out-of-plane C—H bendings)										30 16 9 d 9 8	1365 10-30 20-16 85-10 05-92 80-90 75-73	(m) (v) (s) (s) (s)		
	trans-RCH=CHR Alkynyl ≡C—H (stretching) C≡C (stretching)										~ 3	60-97 3300 00-22	(s) (s) (v)		
D.	Aromatic Ar—H (stretching) Aromatic substitution type (C—H out-of-plane bendings) Monosubstituted o-Disubstituted m-Disubstituted p-Disubstituted									and	6 d 7 7 6 d 7	3030 90-71 30-77 35-77 80-72 50-81	(very s (very s (s) (s) (very s (very s	s) s)	
	O—H Alco Alco Car	(stret phols, phols, boxyli	ching) phend phend c acid	ols (dil ols (hy s (hyc	ute so droge drogen	lutions n bon bond	ded) led)				32	90-36 00-35 00-30	550	(sharp (broad (broad	d, s)
F.		(stret ydes es s exylic	ching)		sters,	and C	Carbox	ylic A	cids		16 16 17 17	30-17 90-17 80-17 35-17 10-17	740 750 750 780	(s) (s) (s) (s) (s)	
G.	Amin										33	00-35	500	(m)	
н.	Nitrile C≡N											20-22		(m)	

^aAbbreviations: s = strong, m = medium, w = weak, v = variable, $\sim = approximately$.